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1 Twists for pairings

As is well known a non-supersingular pairing-friendly elliptic curve is defined by
p, t, r and k, where p is the prime field, t is the trace of the Frobenius and r is
the pairing-friendly group size, where r|p + 1 − t, and r|pk − 1 for the smallest
positive integer k, the embedding degree. For certain families of pairing-friendly
curves, the parameters p, r and t can be represented as polynomials p(x), r(x)
and t(x).

When implementing pairings on pairing friendly non-supersingular curves,
one of the parameters is placed on the curve defined over the base field Fp, and
the other is typically placed on a ‘twisted’ curve, where there exists a group of
points of order r which are isomorphic to a group of points on the curve defined
over the full k-th extension of the base field. For example if the pairing is the
ate pairing, or one of its variants, the pairing is e(Q,P ), where Q ∈ E′(Fpk/d),
where k is the embedding degree and d is the degree of the twist. Points on the
twisted curve are defined over a smaller field, and are thus obviously much faster
to manipulate. However when required in the pairing calculation (for example
for evaluation of the line function) they can be quickly mapped to a point on
E(Fpk).

If the embedding degree k is even then the quadratic twist (d = 2) can be
used. If the pairing-friendly curve has a CM discriminant of D = 1, and 4|k,
then we can use a quartic twist associated with d = 4. Similarly if the curve has
D = 3, and 6|k, then a sextic twist can be used d = 6.

2 Using quadratic twists for pairings

Consider first the case of the quadratic twist with the elliptic curve in its standard
Weierstrass representation.

y2 = x3 +Ax+B

In pairing-based cryptography A,B ∈ Fp, although it is only when considered
over Fpk that the curve supports a bilinear pairing.

The twisted curve over the field of definition Fpk/d will be (following Hess,
Smart and Vercauteren [3])



y2 = x3 +Ax/i2 +B/i3

where i is any quadratic non-residue in the field of definition. Since the chosen
QNR i appears here as a divisor, we call this a type D twist. To map from the
twisted curve to the original curve

E′ → E : (x, y) → (ix, i3/2y)

This can be checked by simple substitution into the equation above. Often
this type of mapping can be realised by a simple placement of x and y from the
twisted curve into the structure representing the point on the original curve over
Fpk , assuming that xk − i is also our choice for the irreducible polynomial used
to represent the full extension field. This “untwisting” mapping is required for
the line function evaluation in the calculation of the pairing, when we map a
point from the twisted curve E′(Fpk/d) to the original curve E(Fpk). See below
for a fully worked example.

For example if the embedding degree k = 2, the field of definition of the
quadratic twist is Fp, and p = 3 mod 4, then i = −1 is a good choice, and the
twisted curve is simply

y2 = x3 +Ax−B

Alternatively if p = 5 mod 8, then i = −2 is a good choice, and the twisted
curve is

y2 = x3 + (A/4)x−B/8

In either case x2 + 1 or x2 + 2 respectively makes a good choice for the
irreducible binomial to represent Fp2 .

If the embedding degree k = 4, the field of definition of the quadratic twist is
the quadratic extension field Fp2 , and if p = 3 mod 8, one can use x2−(1+

√
−1)

as an irreducible polynomial for the towered representation of Fp4 [2], which
immediately suggests i = (1 +

√
−1) as the quadratic non-residue to use in this

case. If p = 5 mod 8, then i =
√
−2 is suitable.

Note that there is only one quadratic twist (different choices for i just result
in isomorphic curves). Note also that from an implementation point of view it
is important that the irreducible binomial be as simple as possible (as it will
be used for extensive extension field arithmetic in the pairing calculation). It is
less important that the equation of the curve be simple, as it is used primarily
to place points on the curve. However it may impact in a small way on the
complexity of the point addition/doubling formulae.

For example in the standard projective Jacobian coordinates, point doubling
can exploit the case A = −3 to save a field multiplication. The numerator of the
slope of the line in this case is calculated as 3X2+AZ4, which in the case A = −3
can be written as 3(X−Z2)(X+Z2). It might be feared that this nice property
would be lost on the twist. However on the quadratic twist A = −3/i2, and so
the numerator of the slope can be calculated as 3(X−Z2/i)(X+Z2/i). Although
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we don’t like divisions, even by small constants, we can quite easily replace the
division by a multiplications, by multiplying the numerator and denominator of
the slope “above and below” by i2

An alternative and perhaps simpler way to address this issue is to represent
the twisted curve by the isomorphic curve

y2 = x3 + i2Ax+ i3B

We call this a type M twist. To effect the mapping in this case

E′ → E : (x, y) → (x/i, i1/2y/i2)

This results in a slightly more complex line function evaluation in the Miller
loop, but for point doubling we are now usingA = −3i2, which avoids the division
in a simpler way. Fortunately in the line function evaluation divisions can always
be replaced by multiplications, as it is always possible to “clear denominators”
by exploiting the denominator elimination optimization.

In this situation, for a given pairing friendly curve, either approach can be
taken, the choice depends only on efficiency of implementation, and there seems
little difference between the two.

3 Using sextic twists for pairings

In the case of sextic twists, following [3], there are actually two sextic twists, one
with q + 1− (−3f + t)/2 points on it, the other with q + 1− (3f + t)/2, where
f =

√
(4q − t2)/3. One of these will be the “right” twist, whose order will be

divisible by r, the predetermined size of the pairing-friendly group. The other is
the “wrong” twist.

The equation for the type D sextic twist associated with our choice of i (from
[3]) is

y2 = x3 +B/i

where i is a cubic and quadratic non-residue in the field of definition of the
twist and x6− i is irreducible. This may generate the curve with the right twist,
but if it does not the other possibility (see [1]) is

y2 = x3 +B/i5

which we can write as

y2 = x3 + i.B/i6

But an isomorphic curve is the M-type twist

y2 = x3 + i.B

(recall we can use any suitable non-residue).
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One of these twists will have the correct number of points on it, the other
will not. We emphasise that this is not a choice – only one of them will work for
a given choice of i and for a given pairing-friendly curve. We continue with the
one that works. The set of all pairing friendly curves generated from a family of
such curves will be divided (not necessarily evenly) between these two camps,
so we might selectively choose one type over the other if there are advantages in
doing so.

So in this case (unlike for the quadratic twist) we do not have a choice of
which representation to use; the pairing friendly curve for the optimal choice of
i falls into either the M-type or D-type category.

For the D-type twist we can move from the twisted curve back to the original
curve using

E′ → E : (x, y) → (i1/3x, i1/2y)

For the M-type twist the mapping is slightly more complicated

E′ → E : (x, y) → (i2/3x/i, i1/2y/i)

Which twist is better for an implementation? Note that the point doubling
formula is not affected at all in this case as A = 0 for these curves. However the
line function evaluations will be impacted. The D-type twist is probably to be
preferred, as the “untwisting” is simpler in that case.

4 Using quartic twists for pairings

In the case of quartic twists, there are two possibilities for the quartic twist, one
with q + 1− f points on it, the other with q + 1 + f , where f =

√
(4q − t2)/3.

Only one will be pairing friendly and divisible by r. The equation for the D-type
quartic twist (from [3]) is

y2 = x3 +Ax/i

where i is a quadratic non-residue in the field (and so x4 − i is irreducible.
Again we choose i to be as simple as possible). This may be the twist with the
embedded pairing-friendly group, but if it is not the other possibility is

y2 = x3 +Ax/i3

which can be written as

y2 = x3 + i.Ax/i4

But an isomorphic curve is the M-type twist

y2 = x3 + i.Ax
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Either the D- or M-type twist will have the correct number of points on it,
the other will not. We continue with the one that works. For the D-type twist
we can move from the twisted curve back to the original curve using

E′ → E : (x, y) → (i1/2x, i3/4y)

For the M-type twist the mapping is

E′ → E : (x, y) → (i1/2x/i, i1/4y/i)

Which twist is better for implementation? The point doubling and line func-
tion calculations will be impacted. But the difference is negligible.

5 The Line Function

The twisting method has implications for the calculation of the line function, as
required for the overall pairing calculation. Let us consider a specific example,
the calculation of an ate pairing (or some variant of the ate pairing), using
affine coordinates on a D-type twisted pairing friendly curve, embedding degree
18, with the extension field Fp18 represented using the irreducible polynomial
z18 +2. Such curves can easily be found using the construction given by [4]. We
will represent the full extension field as recommended in [2] as a 1-3-6-18 tower.

Elements in Fp18 can then be represented as a triple of elements in Fp6

(a0 + a1z
3) + (b0 + b1z

3)z + (c0 + c1z
3)z2

where a0, a1, b0, b1, c0, c1 ∈ Fp3 , and z = (−2)1/18. We will write such an
element as {a0, a1, b0, b1, c0, c1}.

Now for the ate pairing and its variants, the first parameter of the pairing
lies on the twisted curve. Therefore the line is calculated on E′(Fp3). Assuming
that it passes through the point (x, y) then this must be “untwisted” via the
above mapping to the point (z2x, z3y) (with coordinates in Fp18) in order to
calculate the line function. So x → {0, 0, 0, 0, x, 0}, y → {0, y, 0, 0, 0, 0}. The line
slope λ ∈ Fp3 from the point addition or doubling on E′(Fp3), arising as it does
from a quotient of y and x, also needs to be untwisted to zλ, and hence becomes
λ → {0, 0, λ, 0, 0, 0}.

The second parameter of the pairing is a fixed point on the base field (xp, yp),
where xp, yp ∈ Fp. Finally the line function is calculated as

(y − yp)− λ(x− xp)

which evaluates as {−yp, y−xλ, xpλ, 0, 0, 0}. Observe that this requires only a
very small amount of Fp3 arithmetic (primarily a single multiplication) followed
by a placement into the Fp18 structure.
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6 How to proceed?

We suggest the following to ensure an efficient implementation.
First choose an optimal representation for the irreducible binomial xk − i,

that is i with the simplest form. The bulk of pairing arithmetic will be with
respect to this binomial, and so reduction should be as simple as possible.

Having chosen i, next find a suitable pairing-friendly curve. For the quartic
and sextic twist cases, one might either decide to stick with one form of the twist
or the other – simply rejecting curves which require the “wrong” twist for our
preferred choice of i. Alternatively one might might decide to support both forms,
as there may be other criteria that are more important – like finding the Miller
control variable with minimum Hamming weight. However the point doubling
and line function evaluations in both cases may be slightly different (as the
twisting and untwisting mappings will be different), and so the implementation
must change to support one form or the other.

Note that this is at variance with the advice given in [1], where the authors
suggest choosing the curve first and then finding the correct twist, and finally
letting these choices dictate the choice of irreducible polynomial.
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